
Emdros Query Guide

Ulrik Sandborg-Petersen

October 4, 2016

Abstract
This guide will show you how to use the Emdros Corpus Query System to

query your data. It assumes that you have already imported your data into Emdros,
and simply want to start querying. It is aimed at the non-technical person, though
familiarity with corpus linguistics is assumed.

Contents
1 Introduction 3

2 The database model 3

3 Getting started 4

4 Comments 4

5 Gentle introduction 4
5.1 Blocks . 4

5.1.1 Object blocks . 4
5.1.2 Power block . 4
5.1.3 Gap blocks . 5

5.2 The overruling principle of MQL . 5
5.3 Strings of blocks . 5
5.4 Embedding of blocks . 6

6 Blocks in more detail 6
6.1 Object blocks . 6

6.1.1 Feature-restrictions . 6
6.1.2 Feature-comparison form . 7
6.1.3 Values . 7
6.1.4 Comparison operators . 7
6.1.5 The IN operator . 7
6.1.6 The HAS operator . 8

6.2 Power blocks . 8
6.2.1 Limiting with < and <= . 8
6.2.2 Limiting with BETWEEN X AND Y 9

6.3 Gap blocks . 9
6.3.1 Introduction . 9
6.3.2 Optional gap blocks . 9
6.3.3 Automatic insertion of optional gap blocks 10

1

7 Advanced topics 10
7.1 Introduction . 10
7.2 Object blocks . 10

7.2.1 Object references (“AS”) . 10
7.2.2 MARKS . 11
7.2.3 FOCUS/RETRIEVE/NORETRIEVE 11
7.2.4 Inner string of blocks . 12
7.2.5 FIRST/LAST/FIRST AND LAST 12
7.2.6 Regular expression operators 13
7.2.7 NOTEXIST . 13
7.2.8 Order of things inside an object block 15

7.3 Strings of blocks . 15
7.3.1 OR between strings of blocks 15
7.3.2 Restrictions on OR (more on the AS keyword) 17

7.4 Grouping ([square brackets]) . 18
7.4.1 Introduction . 18
7.4.2 Examples . 18

7.5 Kleene star . 18
7.5.1 Introduction . 18
7.5.2 Specifying the number of iterations 19
7.5.3 Restrictions . 20

7.6 Unordered group . 20
7.6.1 Example . 20
7.6.2 Restrictions on unordered groups 21

7.7 Monad set relation clauses . 21
7.7.1 Monad set features . 21
7.7.2 Universe and substrate . 21
7.7.3 Monad set relations . 22
7.7.4 Syntax of monad set relation clauses 22
7.7.5 Example . 23
7.7.6 Examples . 23

A Values 23
A.1 Atomic values . 23
A.2 Lists . 23

B Lexical rules 24

C Regular expressions 24
C.1 Character classes . 25
C.2 Grouping . 25
C.3 Kleene Star (*) . 26
C.4 Kleene Plus (+) . 26
C.5 OR (|) . 26
C.6 Escapes . 26
C.7 Any character . 27

2

1 Introduction
This query guide will show you how to query your data with the Emdros Corpus Query
System.1 It is aimed at a non-technical (i.e., non-programmer) reader, but assumes
familiarity with corpus linguistics.

2 The database model
The EMdF model underlying Emdros has four concepts:

1. Monads

2. Objects

3. Object types

4. Features

A monad is simply an integer, no more, no less.
An object is a set of monads, and belongs to an object type.
An object type groups a set of objects with similar characteristics. Examples would

include “Word”, “Phrase”, “Clause”, “Page”, “Chapter”, “Line”, “Book”, etc.
The object type of an object determins what features it has. A feature is an attribute.

Examples would include “Word.part_of_speech”, “Word.surface”, “Word.lemma”, “Phrase.phrase_type”,
“Phrase.function”, “Chapter.chapter_number”, etc.

The set of monads of an object is quite arbitrary, in that it need not be contiguous,
but may have one or more gaps. This is useful to model things like embedded relative
clauses and postpositive conjunctions.

A feature “take on” exactly one type. This type is one of the following:

1. Integer (e.,g., 1, 3, 100, 133, etc.)

2. id_d (this is a unique integer identifying an object, e.g., 1,3,1003, etc.)

3. enumeration (see below)

4. list of any of the above

5. string of characters (e.g., ’This is my string.’)

6. set of monads.

An enumeration is a set of labels, grouped together to form a type with the labels
as values of that type. The database designer decides which labels are available in
which enumerations in a given database. Thus the exact enumerations available to
you depend on what enumerations the database designer has decided to put into the
database. Examples could be, if you have an enumeration called “part_of_speech”,
it might contain labels like “noun”, “verb”, “adjective”, “adverb”, etc. Enumerations
are also sometimes used for phrasal categories like “NP”, “PP”, etc. Again, the exact
categories available to you are dependent on what is available in your database; these
are just examples.

1http://www.emdros.org/

3

3 Getting started
At the beginning of every query, you must have this incantation:

SELECT ALL OBJECTS
WHERE

This tells Emdros that you wish to issue a linguistic query.2 In this guide, we will
mostly omit this incantation, since it is common to all queries.

NOTE: If you are using Emdros through an interface not provided by the author of
Emdros, your interface designer may have chosen to let you omit this stanza.

4 Comments
In this guide, we will often show comments in the queries. There are two kinds of
comments, but we will only show examples of one kind, namely the one that begins
with two slashes:

// This is a comment

This kind of comment starts with the two slashes, and extend to the end of the line.
Such comments are ignored by Emdros.

The other kind is described in Appendix B on page 24.

5 Gentle introduction

5.1 Blocks
A “block” looks for something in the database. There are three kinds of blocks:

1. Object blocks – look for objects.

2. Power blocks – used to mean “arbitrary space within surrounding the context”.

3. Gap blocks – look for “gaps” in the surrounding context.

5.1.1 Object blocks

A simple object block looks like this:

[word]

This looks for an object of type word.

5.1.2 Power block

A simple power block looks like this:

..

It is simply two dots next to each other.
2The MQL language caters to much more than just linguistic queries, but the rest is mainly concerned

with database maintenance and display of data, and so are outside the scope of this query guide. See the
MQL User’s Guide for more information on these other query types.

4

5.1.3 Gap blocks

A simple gap block looks like this:

[gap]

If you wish the gap to be optional, you can put a question mark after the “gap” keyword:

[gap?]

This is called an “optional gap block”.

5.2 The overruling principle of MQL
The overarching principle of MQL is:

The structure of the query
mirrors

the structure of the objects found
with respect to sequence and embedding.

This means that:

1. If two blocks are next to each other in the query, the objects they find must be
adjacent in the database:

[A]
[B]

2. If a block A is embedded inside another block B in the query, then the object that
block A finds must be embedded inside the object that block B finds:

[B
[A] // A object must be embedded in B

]

5.3 Strings of blocks
You can place blocks next to each other and thus look for a string of blocks. For
example, the query:

[phrase]
[phrase]

looks for two phrases that are adjacent in the database.

5

5.4 Embedding of blocks
You can embed (strings of) blocks in another block:

[Clause
[Phrase]
[Phrase]
[Phrase]

]

This query would find clauses inside of which there are at least three phrases. The
phrases must be adjacent.

If you use the “power block”, you should always do so within the context of a
surrounding block:

[Clause
[Phrase]
..
[Phrase]

]

This would find all clauses in which there were at least two phrases, but the phrases
need not be adjacent.

The reason you should always use a surrounding context when using the power
block is that otherwise, all combinations in the database of what appears before the
power block and what appears after it will be retrieved, which will probably be more
data than you will want to deal with. The language does not disallow using a power
block at the outermost level, it might just return too much data for your liking.

6 Blocks in more detail
In this section, we explain blocks in more detail: First object blocks, then power blocks,
and finally gap blocks.

6.1 Object blocks
As stated before, object blocks at their simplest look like this:

[Phrase]

This query will find all phrases in the database. The word right after the opening
bracket (“[“) is the object type you wish to search for. The exact categories of object
type available to you depend on your database.

6.1.1 Feature-restrictions

You can search for feature-restrictions:

[Word surface=’see’]

This finds all words whose surface-feature is the string “see”.
You can use arbitrary Boolean expressions with feature-restrictions with the opera-

tors AND, OR, NOT, and grouping (i.e., parentheses):

6

[Phrase phrase_type=NP
AND (function = Subj OR function = Obj)
AND NOT self = 13082

]

This will find all phrases whose type is NP, and whose function is either Subj(ect) or
Obj(ect), and whose “self” feature is not 13082.

6.1.2 Feature-comparison form

Each feature-comparison is of the form:

feature operator value

For example, in the feature-comparison

phrase_type = NP

“type” is the feature, “=” is the operator, and “NP” is the value.
The feature-comparisons must always appear in this order. Thus, for example, you

cannot say:3

* NP = phrase_type // This won’t work

6.1.3 Values

For details on values, such as integers and strings, please see Appendix A on page 23.
Briefly:

• integers and id_ds are written as usual (e.g., 1, 100, 175, etc.).

• it is recommended that strings be written surrounded by ’single quotes’, not
"double quotes".4

• enumeration constants are written as they are declared in the database. Of course,
this is database-dependent. Examples could be (this may differ from your database):
NP, PP, AP, noun, verb.

6.1.4 Comparison operators

The operators available to you are listed in Table 1 on the next page.

6.1.5 The IN operator

The IN operator is used like this:

[Word psp IN (noun,adjective,conjunction,article)]

That is, the left-hand-side must be a feature that is either an integer, an id_d, or an enu-
meration, and the right-hand-side must be a comma-separated list of values in paren-
theses.

3The “*” in front is meant to signify that the example is erronerous, in accordance with the usual conven-
tion in linguistic writing.

4The reason is that double-quote-strings treat many characters specially, so you may need to “escape”
certain characters. See Appendix B on page 24 for details.

7

Op. Meaning Left-hand-side feature must be Right-hand-side value must be

= Equality integer, string, id_d, enumeration, list Same as left-hand-side

<> Inequality integer, string, id_d, enumeration Same as left-hand-side

< Less than integer, string, id_d, enumeration Same as left-hand-side

<= Less than or equal to integer, string, id_d, enumeration Same as left-hand-side

> Greater than integer, string, id_d, enumeration Same as left-hand-side

>= Greater than or equal to integer, string, id_d, enumeration Same as left-hand-side

~ Regular expression string string

!~ Negated regular expr. string string

IN List-membership integer, id_d, enumeration list

HAS List-membership list integer, id_d, enumeration

Table 1: Comparison operators

6.1.6 The HAS operator

The HAS operator is the inverse: It looks for a single value in a list-feature:

[Word semantic_categories HAS royal]

6.2 Power blocks
Power blocks are used to mean “an arbitrary stretch of space”:

[Clause
[Phrase]
..
[Phrase]

]

This will find all clauses which have at least two phrases, and inside such clauses, all
combinations of two phrases. The two phrases need not be adjacent.

6.2.1 Limiting with < and <=

You can limit the scope of the power-block like this:

[Clause
[Phrase]
.. <= 5 // The space may only be up to 5 monads long
[Phrase]

]

This also exists in a “strictly less than” version:

[Clause
[Phrase]
.. < 5 // The space may only be up to 4 monads long
[Phrase]

]

8

Exactly how many linguistic units a monad constitutes in your database is dependent
on how the database was designed. It may be “word”, “morpheme”, “phoneme”, “sen-
tence”, or none of these. Ask the person who designed the database how they treated
“monad granularity” if in doubt.

6.2.2 Limiting with BETWEEN X AND Y

The power block can also be used like this:

[Clause
[Phrase]
.. BETWEEN 3 AND 5 // The space must be at least 3

// and at most 5 monads long.
[Phrase]

]

This is equivalent to “3 <= X <= 5”, where X is the length of the stretch in monads.

6.3 Gap blocks
6.3.1 Introduction

Gap blocks are used to look for “gaps” in the surrounding context. For example, some
linguists would hold that the sentence:

• The door, which opened towards the East, was blue.

in fact consists of two clauses, namely:

• The door . . . was blue.

• which opened towards the East

and that “which opened towards the East” is a sibling, not a child, of the clause “The
door . . . was blue.”

In an Emdros database encoding such an analysis, there would be a “gap” in the
clause “The door . . . was blue”, corresponding to the embedded relative clause.

You can look for such cases with the gap block:

[Clause
[gap

[clause clause_type = relative]
]

]

6.3.2 Optional gap blocks

You can specify that a gap block may be optional, by placing a question mark after the
“gap” keyword:

[Phrase
[word psp=article]
[gap?

9

[word first and last psp = conjunction]
]
[word psp=noun]

]

This would look for all phrases in which there is an article, followed optionally by a
gap inside of which the sole word is a conjunction. After the optional gap, there must
be a word which is a noun. This occurs, e.g., in classical Greek, where postpositive
conjunctions abound. These are usually constituents at a higher level, but intervene in
the phrase and/or clause in which they stand. Thus they would give rise to a “gap”.

6.3.3 Automatic insertion of optional gap blocks

An optional gap block is inserted between other blocks by default. This is to safeguard
against not finding cases such as the above with the postpositive conjunction. Thus the
following:

[Phrase
[word psp=article]
[word psp=noun]

]

would also find the cases where a postpositive conjunction intervened between the
article and the noun. Thus the above does not really mean that the article and the noun
must be adjacent; it really means that they must be adjacent, ignoring any gaps in
between.

If you want to turn this automatic insertion off, you can place an exclamation mark
(“!”) between the blocks:

[Phrase
// The ! turns off insertion of optional gap block
[word psp=article]!
[word psp=noun]

]

This will ensure that the article and the noun really are adjacent, and that no gaps
intervene.

7 Advanced topics

7.1 Introduction
This section explains some “advanced” topics. By “advanced” we do not mean that
they are difficult to grasp; rather, we merely mean that they do not belong to the “ba-
sics” of writing an MQL query. In addition, taking a “spiral approach to learning” is a
philosophy to which we subscribe.

7.2 Object blocks
7.2.1 Object references (“AS”)

You can give an object a name, and refer back to it later in the query:

10

[Clause AS container // the AS keyword assigns the name
[Phrase parent = container.self]

]

The AS keyword must appear right after the object type name (“Clause” in this exam-
ple). After the AS keyword, you can write the name you want to give to the object.

Later in the query, you can then refer to a feature on the named object by means of
the “dot-notation”. In the above example, the “parent” feature of the “Phrase” object
type is compared with the “self” feature of the “Clause” object.5

This can be used with any operator, so long as the left-hand-side is a feature (e.g.,
“parent”), and the right-hand-side is the object reference usage (e.g., “container.self”).
Thus you cannot say:

* [Clause AS container
[Phrase container.self = parent] // This won’t work
// switch them around and it will work.

]

7.2.2 MARKS

You can specify “marks” on either an object block, a gap block, or an optional gap
block. The marks look like this: “‘red”, “‘yellow”, “‘context”, “‘red‘context”, “‘Flash_Gordon”.
That is, they start with a backquote (‘), followed by a sequence of letters, numbers or
the underscore (_), where the first character must be either a letter or an underscore.
This pattern can be repeated, as the marks “‘red‘context” shows.

[Clause‘yellow
[Phrase‘red AS p1]
..
[Phrase‘blue phrase_type = p1.phrase_type]

]

The marks specification must come immediately after the object type, as shown by
“Clause‘yellow” above.

Emdros itself does nothing with the marks; it simply passes it on to the applica-
tion lying on top of Emdros. Thus you need to consult any manual for your particular
Emdros-application for whether it does anything with the marks. If not, there is no
point in using them. In particular, Emdros does not assign any meaning to the se-
quences of charaters – for example, “‘red” does not mean that Emdros will show any-
thing in red, and “‘context” does not mean that Emdros will recognize that such and
such is context. The application lying on top of Emdros may do such things, but that is
outside the scope of this manual.

7.2.3 FOCUS/RETRIEVE/NORETRIEVE

You can specify that an object must be in FOCUS:

[Clause FOCUS]

5The “self” feature gives the id_d of the object in question.

11

How this shows up in your results depends on the implementation of the display tool.
Alternatively, you can explicitly say that something must not be retrieved:

[Clause NORETRIEVE]

You can also explicitly say that it must be retrieved (this is unnecessary, as all objects
are retrieved by default):

[Clause RETRIEVE]

If you have an object reference declaration on a block, then the FOCUS/RETRIEVE/NORETRIEVE
keyword must come after the object reference declararition, and before any feature-
restrictions:

[Clause
AS C1 // 1. Object reference declaration
FOCUS // 2. Focus-specification
clause_type = Wayyiqtol // 3. Feature-restriction

]

7.2.4 Inner string of blocks

You can, as already shown, have an inner string of blocks inside an object block:

[Clause
[Phrase]
[Phrase]
[Phrase]

]

This will find all clauses that have at least three phrases inside.
The inner string of blocks must come after any feature-restrictions:

[Clause
AS C1 // 1. Object reference declaration
FOCUS // 2. Focus-specification
clause_type = Wayyiqtol // 3. Feature-restriction

[Word] // 4. Inner string of blocks
[Phrase]
[Phrase]

]

7.2.5 FIRST/LAST/FIRST AND LAST

You can specify that an object block must be FIRST, LAST, or FIRST AND LAST in
its surrounding context:

// Example 1:
[Clause

[Phrase FIRST AND LAST] // must be the only phrase in its context
]
// Example 2:

12

[Clause
[Phrase FIRST] // Must be first
[Phrase LAST] // Must be last

]

The FIRST/LAST/FIRST AND LAST specification must come between any FOCUS/RETRIEVE/NORETRIVE
specification and any feature-restrictions:

[Sentence
[Clause

AS C1 // 1. Object reference declaration
FOCUS // 2. Focus-specification
FIRST AND LAST // 3. FIRST/LAST/FIRST-AND-LAST spec.
clause_type = Wayyiqtol // 4. Feature-restriction

[Word] // 5. Inner string of blocks
[Phrase]
[Phrase]

]
]

7.2.6 Regular expression operators

The “~” and “!~” operators work with Perl56-compatible regular expressions7 on the
right-hand-side:

// finds both "see" and "See"
[Word surface ~ ’[Ss]ee’]
// finds everything that is neither "my" nor "your"
[Word surface !~ ’(my)|(your)’]

Note that if you use the “backslash” escape-operator with "double-quote-strings", you
need to escape it twice:

// This will find a literal $ followed by a literal dot.
[Word surface ~ "\\$\\."]

Thus it is often easier to use ’single quote strings’ with regular expressions:

// This will find a literal $ followed by a literal dot.
[Word surface ~ ’\$\.’]

For details, please see Appendix B on page 24.

7.2.7 NOTEXIST

You can specify that an object block must “not exist” with the “NOTEXIST” keyword:

6Perl is a programming language, and Perl5 is version 5 of the language.
7For details on regular expressions, please see Appendix C on page 24.

13

[Sentence
NOTEXIST [Word surface = ’see’]

]

This finds all sentences in which the word “see” does not occur.
Note how this is very different from saying:

[Sentence
[Word surface <> ’see’]

]

This would find all sentences which has a word which is not “see”. That would include
sentences which did have the word “see”, but which also had other words.

You are allowed to intermix NOTEXIST with other blocks in the same context. For
example, this is allowed:

[Clause
[Phrase]
NOTEXIST [Word surface=’food’]
[Word surface=’glue’]

]

What that means is that we want clauses inside of which there is a phrase, right after
which there is a Word with surface=”glue”. From the end of the Phrase until the end of
the Clause, there must not exist a Word with surface=”food”.

So: a) The NOTEXIST block is regarded as not being present when considering
the surrounding blocks. That is why the “glue” word must be right after the Phrase in
order for this query to match. Essentially, a NOTEXIST block has “zero width” with
respect to consecutiveness. b) The NOTEXIST block is looked for starting at the end
of the previous block (or the start of the context if the NOTEXIST block is the first)
and running to the end of the context.

You are allowed to use NOTEXIST more than once in any given context. For
example, this is allowed:

[Sentence
NOTEXIST [Word surface = ’see’]
NOTEXIST [Word surface = ’the’]

]

This would find all sentences inside of which neither a word with surface=”see” nor
a word with surface=”the” exists. Because the NOTEXIST block with surface=”see”
is the first in the context, the word “see” must not occur anywhere within the sen-
tence. Because a NOTEXIST block has “zero width” with respect to consecutiveness,
it means that the domain within which a word with surface=”the” must not occur is
also anywhere within the sentence.

You cannot use an object reference that has been declared “inside” a NOTEXIST,
except if you also use it “inside” the same NOTEXIST. Thus you cannot say:

* [Clause
[Phrase

NOTEXIST[Word as w1 surface=’food’]

14

]
// OOPS! The NOTEXIST intervenes, so we can’t “see” w1 here...
[Word part_of_speech=w1.part_of_speech]

]

But you can say:

[Clause
NOTEXIST [Phrase

[Word as w1 part_of_speech=noun]
..
// This is OK! NOTEXIST does not intervene,
// but stands above both!
[Word part_of_speech <> w1.part_of_speech]

]
]

7.2.8 Order of things inside an object block

As we have seen, an object block allows for certain restrictions and other elements
inside it, such as an “AS name” element, a “FOCUS” element, a “FIRST” element, etc.
These elements must come in a certain order for the query to be syntactically correct
(i.e., parseable by Emdros). The exact order is (and any of these is optional):

1. Marks

2. Object reference declartion (“AS <name>”)

3. FOCUS / RETRIEVE / NORETRIEVE

4. FIRST / LAST / FIRST AND LAST

5. feature-comparison (e.g., “part_of_speech <> noun”).

6. optional inner block string.

7.3 Strings of blocks
7.3.1 OR between strings of blocks

A “string of blocks” is an unbroken sequence of object blocks, power blocks, and/or
gap blocks. You can put an “OR” keyword in between two such strings. The result
will be as though you had issued two separate queries, with one string of blocks taken
away and the other left in (and the OR taken out as well), then vice-versa for the second
query. This is useful, e.g. to search for different combinations of a given sequence of
phrases with specific functions:

[Clause
[Phrase function = Subj]
[Phrase function = Pred]
[Phrase function = Objc] // Here the object comes before
[Phrase function = Adjunct] // the adjunct
or

15

[Phrase function = Subj]
[Phrase function = Pred]
[Phrase function = Adjunct] // Here the adjunct comes before
[Phrase function = Objc] // the object

]

As mentioned, the OR construct works between strings of blocks. It doesn’t matter
what kind of block is involved (object block, power block, or gap block), so you could
also say:

[Clause
[Phrase function = Subj]
..
[Phrase function = Objc]
OR // The OR Works between on the one hand Subj..Objc

// and on the other hand, Objc..Adjunct
[Phrase function = Objc]
..
[Phrase function = Adjunct]

]

Or even:

[Clause
[gap [Clause clause_type = Appositional]]
OR
[Phrase function = Objc]
[Phrase function = Adjunct]

]

You can also have more than one OR between more than two strings of blocks:

// Finds all triples of object, adjunct, and complement
// where either the object or the complement is first.
// To find all six combinations (i.e., also adjunct first),
// simply add two more ORs with the right orders of phrases.
[Clause

[Phrase function = Objc]
[Phrase function = Adjunct]
[Phrase functino = Complement]
OR
[Phrase function = Objc]
[Phrase functino = Complement]
[Phrase function = Adjunct]
OR
[Phrase functino = Complement]
[Phrase function = Objc]
[Phrase function = Adjunct]
OR
[Phrase functino = Complement]

16

[Phrase function = Adjunct]
[Phrase function = Objc]

]

7.3.2 Restrictions on OR (more on the AS keyword)

There is one restriction pertaining to OR: When you have a reference between two
objects (using the AS keyword, see Section 7.2.1 on page 10), then both the object
block on which you use the AS keyword, and the object block on which you use the
reference, must be within the SAME string of blocks. The usage cannot cross an OR.
Thus you cannot say:

* [Clause
[Phrase AS p1]
OR
[Phrase function = p1.function] // OOPS! Illegal because it

// crosses the OR construct!
]

Nor can you say:

* [Clause
[Phrase

[Phrase AS p2]
]
OR
[Phrase function = p2.function] // OOPS! Illegal because it

// crosses the OR construct!
]

When we said that both the declaration (with the “AS” keyword) and the usage must
be within the same string of blocks, we did not mean that they have to be at the same
level, like this:

[Clause
[Phrase AS p1]
[Phrase function <> p1.function] // This is OK, since it does not
OR // cross the OR.
[gap]

]

These two, the declaration and the usage, are at the same level. But it is OK to have
one of them be more deeply nested than the other:

[Clause
[Phrase

[Phrase AS p1] // This is more deeply nested than the usage
]
[Phrase function <> p1.function] // This is OK, since it does not
OR // cross the OR.
[gap]

]

17

7.4 Grouping ([square brackets])
7.4.1 Introduction

“[Square brackets]” are used to group one or more strings of blocks, as if there were
“parentheses” around them.

7.4.2 Examples

The following topograph illustrates the use of square brackets for grouping:

[Clause
[Phrase function = Predicate]
[

[Phrase function = Objc]
[Phrase function = Adjunct]
OR
[Phrase function = Indirect_object]
[Phrase function = Complement]

]
]

This query finds all clauses in which there is a Phrase whose function is Predicate.
Right after this phrase must come, either an Object followed by an Adjunct, or an
Indirect object followed by a Complement.

Another example:

[Clause
[

[Phrase function = Subject]
OR
[Phrase function = Complement]
[Phrase function = Adjunct]

]
..
[Phrase function = Predicate]

]

This query finds all clauses in which there is, first either a Subject, or a Complement
followed by an Adjunct. Then, after either of these, there can be arbitary space within
the Clause (indicated by the “..” power block), and then a Predicate must appear.

7.5 Kleene star
7.5.1 Introduction

You can have a Kleene star construction on any object block or [group] in a query:

[Phrase
// Note the * at the end
[Word psp IN (article,noun,conjunction,adjective)]*

]

18

This query will find all phrases, inside of which there are zero or more adjacent words
whose parts of speech are either article, noun, conjunction, or adjective. This would
find many noun phrases.

You can also have a Kleene star on a group of blocks:

[Clause
[

[Word psp IN (article, noun, preposition)]
[Word psp IN (noun, adjective)]

] *
]

This would find all clauses inside of which there are zero or more iterations of the
pattern “a Word whose part of speech is either article, noun, or preposition”, followed
by a “Word whose part of speech is either noun or adjective.”

NOTE: Because there are [square brackets] around the two words, and because the
Kleene star applies to the group, it is the group that is repeated.

The Kleene star means “find me zero or more like this”.

7.5.2 Specifying the number of iterations

You can also specify a set of integers that gives the number of times required:

// Example 1:
[Phrase

[Word]*{0,1} // This makes the word optional (0 or 1 times)
]

// Example 2:
// This finds all clauses in which the first phrase is a subject,
// followed by exactly 3 non-subject, non-adjunct prases,
// followed by an adjunct phrase.
[Clause

[Phrase FIRST function = Subject]
// There must be exactly three phrases between the subject...
[Phrase NOT function IN (Subject,Adjunct)]*{3}

// ... and the adjunct
[Phrase function = Adjunct]

]

// Example 3:
[Clause

// Finds such phrases 1,2,3,5,6,7, or 9 and above times
[Phrase

function = Subj OR function = Obj
]*{1-3,5-7,9-}
// But still only within the surrounding clause

]

19

7.5.3 Restrictions

The following restrictions apply:

• You cannot have an object reference declaration (using the AS keyword) on an
object block on which you also have a Kleene Star. For example, this is NOT
allowed:

* [Phrase as p1]* // OOPS! Not allowed to have both AS and Kleene Star!
[Phrase function=p1.functino]

• You cannot use an object reference that has been declared inside an object block
or group with a Kleene Star, if the usage is outside the object block or group with
the Kleene Star. (If it is used inside, you can use it there, but not outside). Thus
this is NOT allowed:

* [Phrase
[Word as w1]

]* // OOPS! Kleene Star on Phrase...
[Word surface=w1.surface] // so we can’t “see” the reference here!

• Whereas this is allowed:

[Phrase
[Word as w1]
..
[Word lexeme=w1.lexeme]

]* // This * is OK; we don’t “cross” it when we use the reference!

7.6 Unordered group
7.6.1 Example

As of Emdros version 3.4.1.pre32, a new MQL construct has been added to the capa-
bilities of MQL, namely the “Unordered group”.

For example:

[Sentence
[UnorderedGroup

[Word surface=’good’]
[Word surface=’life’]

]
]

This would find a Sentence, within which both the word “good” and the word “life”
would appear, in any order. Thus sentences such as “He lives the good life” and “His
life is good” would both be found by this query.

20

7.6.2 Restrictions on unordered groups

The following restrictions apply:

1. Placement: You can only have an Unordered group where you would otherwise
have a complete string of blocks, without any OR on either side. Thus you can
have it:

(a) At the top-most level in the query

(b) Right inside an object block or gap block, with no OR before or after the
Unordered group.

2. Only object blocks: You can only have “bare” object blocks inside an Unordered
group. No power blocks, gap blocks, optional gap blocks, or NOTEXIST object
blocks are allowed inside an Unordered group.

3. No Kleene star: You cannot use a Kleene star on an Unordered group.

4. Object declarations export barrier: You can use object references (e.g., “par-
ents HAS s1.self”) declared above an object block inside the Unordered group,
but you cannot declare an object reference (e.g., “AS w1”) inside an Unordered
group and use it outside the Unordered group, or even within it.

5. No exclamation marks: Since no optional gap blocks are allowed inside the Un-
ordered group, you cannot use the ! to declare that no optional gap blocks will
be inserted — order doesn’t matter within an unordered group, so optional gap
blocks between object blocks does not make sense.

7.7 Monad set relation clauses
7.7.1 Monad set features

Every object in an Emdros database has a special feature called “monads”. It is a set
of monads, and is the default way of relating objects to one another. However, it is
possible to have more than one monad set feature on an object. It is up to the designer
of the database to determine whether to put more than one monad set feature on an
object, and which monads to put inside these other monad set features.

7.7.2 Universe and substrate

While executing an MQL query, Emdros keeps track of the “context” set of monads
within which to search. At the top level, this is usually “all the monads from the lowest
monad to the highest monad on any object in the database”. However, inside an object
block or gap block, the context switches to the monad set of the surrounding object or
gap.

This “context monad set” is called the “Substrate”.
A substrate always has a companion monad set, called the “Universe”. The Uni-

verse is defined as the set of monads containins all the monads from the first monad
of the substrate to the last monad of the substrate. Another way to think about it is to
think of the Universe as the same as the substrate, with any gaps in the substrate “filled
out” in the Universe.

21

7.7.3 Monad set relations

The default way of relating objects embedded inside another object is to check whether
the inner object’s monads is a subset of the Substrate, i.e., whether the inner object’s
monads is a subset of the surrounding context’s monads. For example:

[Sentence
[Phrase] // The Phrase’s monads must be a subset

// of the monads of the Sentence
]

However, the “subset relation”, while the default, is not the only relation between
monad sets which Emdros supports. There are three such relations in total:

1. part_of: This is the default, the “subset” relation.

2. overlap: This means that the inner object must have at least one monad in com-
mon with the context set of monads. Notice that this entails that the object may
start before, and/or end after the monad set of the surrounding context. It doesn’t
matter, so long as there is at least one monad in common.

3. starts_in: This means that the inner object must have its first monad be a member
of the context set of monads. Notice that there is no restriction on where the inner
object ends: Its last monad may be inside the surrounding context monad set, but
it may also end after it.

7.7.4 Syntax of monad set relation clauses

A monad set relation clause can be placed on any object block or NOTEXIST object
block. It looks like one of the following four templates:

1. <monad set relation> “(“ <monad set name> “,” “substrate” “)”

2. <monad set relation> “(“ <monad set name> “,” “universe” “)”

3. <monad set relation> “(“ “substrate” “)”

4. <monad set relation> “(“ “universe” “)”

It may also be empty, in which case it means “part_of(monads, substrate)”.
For example:

• part_of(monads, universe)

• overlap(monads, substrate)

• overlap(dependency_head_monad_set, substrate)

• starts_in(monads, universe)

• part_of(universe)

• starts_in(universe)

The monad set relation clause must be placed between any “FIRST” / “LAST” / “FIRST
AND LAST” element and any feature constraints.

22

7.7.5 Example

7.7.6 Examples

// In a database of Shakespeare’s plays, the actant “Romeo” may
// say a Sentence which overlaps with a VerseLine object.
// Sentences often span verse lines, so part_of
// won’t find such verse-line-spanning sentences,
// since the subset relation does not hold.
// Instead, the overlap relation is used.
[ActantSpeech actant=’Romeo’

[VerseLine
[Sentence overlap(substrate)]

]
]
// Sometimes in Shakespeare’s plays, a single verse line
// which is started by one actant is finished by
// another actant. The following query would find
// verse lines which start somewhere inside a
// speech by Friar Lawrence, regardless of whether
// it is also finished by Friar Lawrence.
[ActantSpeech actant=’Friar Lawrence’

[VerseLine starts_in(universe)]
]

A Values

A.1 Atomic values
There are four kinds of atomic values:

1. integer: e.g. 0, 1, 42, 976, 1000, etc.

2. id_d: Like integers, but can also be NIL (no value).

3. enumeration: Whatever is defined in your database.

4. string: Enclosed in "double quotes" or ’single quotes’.

A.2 Lists
You can build lists out of integers, id_ds, and enumeration labels, but you cannot cur-
rently build lists of out strings.

Lists are enclosed in (parentheses), and are comma-separated. For example:

1. List of integer: (0,1000,23,76)

2. List of id_d: (NIL, 13200)

3. List of enum label: (NP,AP,PP)

A list can also have a single value inside, e.g., (NP).

23

B Lexical rules
1. Whitespace is ignored except to separate tokens, and in strings.

2. Everything except enumeration-labels and strings is case-INsensitive. Enumera-
tion labels and strings ARE case-sensitive.

3. Reserved words (such as “object”, “create”, “type”, etc.) may not be used except
as reserved words. That is, you cannot, say, have a feature called “type” or an
enumeration constant called “object”.

4. Strings can be of two kinds: Either surrounded by "double quotes", or surrounded
by ’single quotes’. Both may contain newlines. Backslashes inside "double-
quote-strings" behave as escape-characters according to Table 2. Backslashes
inside of ’single-quote-strings’ behave as backslashes, and in fact you cannot
escape anything inside of a ’single-quote-string’.

5. Comments are ignored when parsing MQL. There are two kinds:

// This kind starts with two slashes.
// It extends to the end of the line.
// Thus if you want multiple lines commented out,

// you have to start each new line with the double slash.
/* This is the other kind of comment.

It may extend over multiple lines. It begins with
slash-star and ends with star-slash.

*/

6. An identifier starts with an underscore or the letters A-Z or the letters a-z. If it
is longer than 1 character, it continues with underscores, letters from A-Z, letters
from a-z, or digits in the range 0-9. Thus it conforms to the regular expression
’[_A-Za-z][_A-Za-z0-9]*’.

7. Database names,8 object type names, feature names, enumeration names, enu-
meration labels, and monad set names must be identifiers.

C Regular expressions
This is a crash course in regular expressions. Regular expressions (or RegExes) are a
way of specifying a set of strings, which in Emdros can be used to compare a string-
feature against many values at once. For example, if you wish to search for both “See”
and “see” at once, you can use the regular expression comparison:

surface ~ ’[Ss]ee’

The effect is as if you had said:

surface = ’See’ OR surface = ’see’
8Except on SQLite, where a database name may be non-identifiers. In that case, however, it must be

expressed as a "string" or a ’string’.

24

Escape Meaning
\n line feed (ASCII 0x0a)
\t horizontal tab (ASCII 0x09)
\v vertical tab (ASCII 0x0b)
\b backspace (ASCII 0x08)
\a alert/bell (ASCII 0x07)
\f form feed (ASCII 0x0c)
\r carriage-return (ASCII 0x0d)
\\ \
\? ?
\’ ’
\” "

\XYZ The character with octal-based number XYZ (e.g., \040 meaning 32)
\xXY The character with hexadecimal-based number XY (e.g. \x20 meaning 32)

Table 2: Backslash-escapes in "double-quote-strings"

C.1 Character classes
You can specify character-classes with the [square brackets]. A character-class is a set
of characters that are looked for at once. A simple example would be:

[AaBbCc]

This would look for the letters A, B, C, a, b, and c all at once. If just one of them was
present, the whole character class would match.

The above could also be rewritten as:

[A-Ca-c]

This is because, inside a character class, the dash (also known as minus) means “from
the previous character to the next character, both inclusive”. Thus if you wish to search
for the characters A-Z, you can say [A-Z]. If you wish to search for a minus, and
include the minus in the character class, you can put it last in the character class:

[A-Z-]

This would search for the letters A-Z, but would also search for the minus.
If you wish to negate the character class, you can put the “hat” (“^”) at the begin-

ning of the class:

[^A-Z]

This would search for all characters except the letters A-Z (thus it would also search
for the letters a-z, since regular expressions are case-sensitive).

C.2 Grouping
You can group sequences of characters or character classes with parentheses:

(se[ea])

The utility of grouping will be apparent shortly.

25

C.3 Kleene Star (*)
You can specify that something must occur zero or more times:

[A-Za-z0-9]*

This would search for the characters A-Z, a-z, and 0-9, and they may occur 0 or more
times after each other. Thus both “”, “a”, “aA, “aAZ”, and “abc0” would match.

The Kleene Star applies only to the previous character, character class, or group.
Thus if you wish a whole string of characters to be repeated, you must use grouping:

(elar)*

This would match “”, “elar”, “elarelar”, “elarelarelar”, etc.
If you say:

elar*

then “ela”, “elar”, “elarr”, “elarrr”, etc. will be matched.

C.4 Kleene Plus (+)
The Kleene Plus (specified with “+”) is similar to the Kleene Star, except that it matches
one or more times, not zero or more times:

utterance ~ ’My precious+’

would match any of “My precious”, “My preciouss”, “My preciousss”, etc.
Again, the Kleene Plus applies only to the previous character, character class, or

group. If you wish to repeat a whole string, then it must be grouped with parentheses.

C.5 OR (|)
You can specify that either of two characters, character classes, or groups should match,
with the “or” construct (which in the regular expressions is a “|”):

(sea)|(lake)

This would match either “sea” or “lake”.
As with the Kleene Star, the | applies only to the surrounding two characters, char-

acter classes, or groups. Thus if you do wish to match either of two strings, you must
put parentheses around both strings, as in the “sea or lake” example above. If you say:

sea|lake

then the two strings “selake” or “seaake” will be matched.

C.6 Escapes
If you wish to match one of the characters that have a special meaning, e.g., “[”, “]”,
“*”, “+”, “|”, etc., then you must put a backslash (“\”) in front: “\[”, “\]”, “*”, etc.

Of course, a backslash also has special meaning, so if you wish to match a back-
slash, you must escape it, too: “\\”.

26

C.7 Any character
If you wish to match “any character”, there is a shorthand for the character class that
matches “all characters”: It is simply a dot (also known as period):

^We the people.*

This would match any string which started with the letters “We the people” and which
then continued with zero or more characters of any kind.

Note that if you wish to match a period, you need to escape the period: “\.”.

27

